He, K. & Rangel, S.J. Advances in the diagnosis and treatment of appendicitis in children. Given Surgeon. 559–33 (2021).
Malia, L. et al. Predictors for acute appendicitis in children. Pediatrics Emerging. Concern. 37 (12), e962-e968. https://doi.org/10.1097/PEC.0000000000001840 (2021).
Fujii, T., Tanaka, A., Katami, H. & Shimono, R. Usefulness of the pediatric appendicitis score for assessing the severity of acute appendicitis in children. Pediatrics Int. 62 (1), 70–73. https://doi.org/10.1111/ped.14032 (2020).
Fujishiro, J. et al. Laparoscopic versus open appendectomy for acute appendicitis in children: a nationwide retrospective study of postoperative outcomes. J. Gastrointest. Surgeon. 25 (4), 1036–1044. https://doi.org/10.1007/s11605-020-04544-3 (2021).
Feng, W., Zhao, XF, Li, MM & Cui, HL A clinical prediction model for complicated appendicitis in children under five years of age. BMC Pediatrician. 201–9. https://doi.org/10.1186/s12887-020-02286-4 (2020).
Fasihfar, Z., Rokhsati, H., Sadeghsalehi, H., Ghaderzadeh, M. & Gheisari, M. AI-driven malaria diagnosis: development of a robust model for accurate detection and classification of malaria parasites. Iran. J. Blood cancer. 15 (3), 112–124. https://doi.org/10.61186/ijbc.15.3.112 (2023).
Ghaderzadeh, M., Asadi, F., Ramezan Ghorbani, N., Almasi, S. & Taami, T. Towards applications of artificial intelligence (AI) in determining the severity of COVID-19 infection: Considering AI as a disease control strategy in future pandemics. Iran. J. Blood cancer. 15 (3), 93–111. https://doi.org/10.61186/ijbc.15.3.93 (2023).
Chadaga, K. et al. SADXAI: Predicting Social Anxiety Disorder Using Multiple Interpretable Artificial Intelligence Techniques. SLAS technology. 29 (2), 100129. https://doi.org/10.1016/j.slast.2024.100129 (2024).
Chadaga, K. et al. Explainable Artificial Intelligence Approaches for Predicting Prognosis of COVID-19 Using Clinical Markers. Science Rep. 14 (1), 1783. https://doi.org/10.1038/s41598-024-52428-2 (2024).
Nie, D. et al. Artificial intelligence distinguishes abdominal Henoch-Schönlein purpura from acute appendicitis in children. Int. J. Rheum. Dis. 26 (12), 2534–2542. https://doi.org/10.1111/1756-185X.14956 (2023).
Mijwil, MM & Aggarwal, K. A diagnostic test for people with appendicitis using machine learning techniques. Multimedia tools Appl. 81 (5), 7011–7023. https://doi.org/10.1007/s11042-022-11939-8 (2022).
Marcinkevics, R., Reis Wolfertstetter, P., Wellmann, S., Knorr, C. & Vogt, J.E. Using machine learning to predict the diagnosis, management and severity of appendicitis in children. Front. Pead. 9662183. https://doi.org/10.3389/fped.2021.662183 (2021).
Aydin, E. et al. A novel and simple machine learning algorithm for preoperative diagnosis of acute appendicitis in children. Pediatrics Surgeon. Int. 36735–742. https://doi.org/10.1007/s00383-020-04655-7 (2020).
Akbulut, S. et al. Prediction of perforated and non-perforated acute appendicitis using machine learning-based explainable artificial intelligence. Diagnostics. 13 (6), 1173. https://doi.org/10.3390/diagnostics13061173 (2023).
Marcinkevičs, R. et al. Pediatric Appendicitis Dataset Regensburg. Zenodo; (2023).
Meyer, KE, van Witteloostuijn, A. & Beugelsdijk, S. What’s in ap? Reassessing best practices for conducting and reporting hypothesis-testing research. In: (eds Eden, L., Nielsen, BB & Verbeke, A.) Research methods in international business. JIBS Special Collections. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-22113-3_4 (2020).
Bolt, MA et al. Inference after multiple imputation for generalized additive models: a study of the median p-value rule with applications to the Pulmonary Hypertension Association Registry and Colorado COVID-19 hospitalization data. BMC Med. Res. Method. 22 (1), 148. https://doi.org/10.1186/s12874-022-01613-w (2022).
Ahsan, MM, Mahmud, MP, Saha, PK, Gupta, KD & Siddique, Z. Effect of data scaling methods on machine learning algorithms and model performance. Technologies. 9 (3), 52. https://doi.org/10.3390/technologies9030052 (2021).
Hancock, JT & Khoshgoftaar, TM Survey on categorical data for neural networks. J. big dates. 7 (1), 28. https://doi.org/10.1186/s40537-020-00305-w (2020).
Thabtah, F., Hammoud, S., Kamalov, F. & Gonsalves, A. Data imbalance in classification: experimental evaluation. Inf. Science 513https://doi.org/10.1016/j.ins.2019.11.004 (2020). :429 – 41.
Chen, Y., Chang, R. & Guo, J. Effects of data augmentation method borderline-SMOTE on emotion recognition from EEG signals based on convolutional neural network. IEEE Access. 947491–47502. https://doi.org/10.1109/ACCESS.2021.3068316 (2021).
Koopialipoor, M. et al. Introducing stacking machine learning approaches for predicting rock deformation. Transp. Geotechnics. 34100756. https://doi.org/10.1016/j.trgeo.2022.100756 (2022).
Feng, D.C., Wang, W.J., Mangalathu, S. & Taciroglu, E. Interpretable XGBoost-SHAP machine learning model for predicting shear strength of stubby RC walls. J. Structure. Scary. 147 (11), 04021173. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003115 (2021).
Visani, G. et al. Statistical stability indices for LIME: obtaining reliable explanations for machine learning models. Journal of the Operational Research Society. ;73(1):91–101., Statistical stability indices for LIME: obtaining reliable explanations for machine learning models. Journal of the Operational Research Society. 2022;73(1):91–101. (2022).
Khanna, V.V., Chadaga, K., Sampathila, N., Prabhu, S. & Chadaga, R. A machine learning and explainable artificial intelligence triage prediction system for COVID-19. Decision Analytics Journal. Be able to 6:100246. (2023). https://doi.org/10.1016/j.dajour.2023.100246
Sun, D., Ding, Y., Wen, H. & Zhang, F. A novel QLattice-based whitening machine learning model for landslide susceptibility mapping. Earth. Surfing. Proc. Country. 49 (1), 304–317. https://doi.org/10.1002/esp.5675 (2024).
Fernández, RR, de Diego, IM, Moguerza, JM & Herrera, F. Explanation sets: a general framework for machine learning explainability. Inf. Science 617464–481. https://doi.org/10.1016/j.ins.2022.10.084 (2022).
Stuke, A., Rinke, P. & Todorović, M. Efficient hyperparameter tuning for kernel ridge regression with Bayesian optimization. Mach. Learning: Science. Technology 2 (3), 035022. (2021).
Google Scholar
Eskandari, S. & Javidi, M. M. A new hybrid bat algorithm with fast clustering-based hybridization. Evolve Intel. 13 (3), 427–442. https://doi.org/10.1007/s12065-019-00307-5 (2020).
Bi, J., Yuan, H., Zhai, J., Zhou, M. & Poor, H. V. Self-adaptive bat algorithm with genetic operations. IEEE/CAA J. Automatica Sinica. 9 (7), 1284–1294 (2022).
Kumar, V. & Kumar, D. A systematic review of the Firefly algorithm: past, present and future. Bow. Computer. Methods Eng.283269–3291. https://doi.org/10.1007/s11831-020-09498-y (2021).
Belete, DM & Huchaiah, MD Grid research in hyperparameter optimization of machine learning models for predicting HIV/AIDS test results. Int. J. Calculate. Appl. 44 (9), 875-886. https://doi.org/10.1080/1206212X.2021.1974663 (2022).
Ren, P. et al. A comprehensive review of neural architecture search: challenges and solutions. ACM computer. To survive. (CSUR). 54 (4), 1–34. https://doi.org/10.1145/3447582 (2021).
De Jonge, J. et al. Normal inflammatory markers and acute appendicitis: a national multicenter prospective cohort analysis. Int. J. Colorectal Dis. 36 (7), 1507–1513. https://doi.org/10.1007/s00384-021-03933-7 (2021).
Kim, JJ et al. Can normal inflammatory markers rule out acute appendicitis? The reliability of biochemical research in diagnosis. ANZ J. Surg. 90 (10), 1970–1974. https://doi.org/10.1111/ans.15559 (2020).
Dooki, ME et al. Diagnostic accuracy of laboratory markers for the diagnosis of acute appendicitis in children. Vienna. Med. Wochenschr. 172 (13), 303–307. https://doi.org/10.1007/s10354-021-00898-8 (2022).